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Abstract: As we move into the information age, the amount of data in various fields has increased
dramatically, and data sources have become increasingly widely distributed. The corresponding
phenomenon of missing data is increasingly common, and it leads to the generation of incomplete
multi-source information systems. In this context, this paper’s proposal aims to address the limitations
of rough set theory. We study the method of multi-source fusion in incomplete multi-source systems.
This paper presents a method for fusing incomplete multi-source systems based on information
entropy; in particular, by comparison with another method, our fusion method is validated.
Furthermore, extensive experiments are conducted on six UCI data sets to verify the performance of
the proposed method. Additionally, the experimental results indicate that multi-source information
fusion approaches significantly outperform other approaches to fusion.

Keywords: incomplete information system; information entropy; multi-source information fusion;
rough set theory

1. Introduction

Information fusion is used to obtain more accurate and definite inferences from the data provided
by any single information source by integrating multiple information sources; several definitions
have been proposed in the literature [1–9]. The theory of information fusion was first used in the
military field; it is defined as a multi-level and multi-aspect process that handles problems. In fact,
data fusion can be broadly summarized as such a process; namely, to synthesize comprehensive
intelligence from multi-sensor data and information according to established rules and analysis
methods, and on this basis, to provide the user-required information, such as decisions, tasks, or tracks.
Therefore, the basic purpose of data fusion is to obtain information that is more reliable than data
from any single input. Along with the progress of time, information fusion technology has become
increasingly important in the field of information service. Multi-source information fusion is one
of the most important parts of information service in the age of big data, and many productive
achievements have been made. Many scholars have conducted research on multi-source information
fusion. For example, Hai [10] investigated predictions of formation drillability based on multi-source
information fusion. Cai et al. [11] researched multi-source information fusion-based fault diagnosis
of a ground-source heat pump using a Bayesian network. Ribeiro et al. [12] studied an algorithm for
data information fusion that includes concepts from multi-criteria decision-making and computational
intelligence, especially fuzzy multi-criteria decision-making and mixture aggregation operators with
weighting functions. Some relative papers have studied entropy measure with other fuzzy extensions.
For instance, Wei et al. [13] proposed uncertainty measures of extended hesitant fuzzy linguistic term
sets. Based on interval-valued intuitionistic fuzzy soft sets, Liu et al. [14] proposed a theoretical
development on the entropy. Yang et al. [15] proposed cross-entropy measures of linguistic hesitant
intuitionistic fuzzy systems.
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An information system is the main expression of an information source and the basic structure
underlying information fusion. An information system is a data table that describes the relationships
among objects and attributes. There is a great deal of uncertainty in the process of information fusion.
Rough set theory is usually used to measure the uncertainty in an information table. Rough set
theory—which was introduced by Pawlak [16–20]—is an extension of classical set theory. In data
analysis, it can be considered a mathematical and soft computational tool to handle imprecision,
vagueness, and uncertainty. This relatively new soft computing methodology has received a great
deal of attention in recent years, and its effectiveness has been confirmed by successful applications in
many science and engineering fields, including pattern recognition, data mining, image processing,
and medical diagnosis [21,22]. Rough set theory is based on the classification mechanism, and the
theory is classified as an equivalence relation in a specific universe, and this equivalence relation
constitutes a partition of the universe. A concept (or more precisely, the extension of a concept)
is represented by a subset of a universe of objects, and is approximated by a pair of definable
concepts in a logic language. The main idea of rough set theory is the use of known knowledge in
a knowledge base to approximate inaccurate and uncertain knowledge. This seems to be of fundamental
importance to artificial intelligence and cognitive science. An information system is the basic structure
underlying information fusion, and rough set theory is usually used to measure the uncertainty in
an information system. Therefore, it is feasible to use rough set theory for information fusion. Some
scholars have conducted research in this field. For example, Grzymala-Busse [23] presented and
compared nine different approaches to missing attribute values. For testing both naive classification
and new classification techniques of LERS (Learning from Examples based on Rough Sets) were
used. Dong et al. [24] researched the processing of information fusion based on rough set theory.
Wang et al. [25] investigated multi-sensor information fusion based on rough sets. Huang et al. [26]
proposed a novel method for tourism analysis with multiple outcome capability based on rough
set theory. Luo et al. [27] studied incremental update of rough set approximation under the grade
indiscernibility relation. Yuan et al. [28] considered multi-sensor information fusion based on rough
set theory. In addition, Khan et al. [29,30] used views of the membership of objects to study rough
sets and notions of approximates in multi-source situations. Md et al. [31] proposed a modal logic for
multi-source tolerance approximation spaces based on the principle of considering only the information
that sources have about objects. Lin et al. studied an information fusion approach based on combining
multi-granulation rough sets with evidence theory [32]. Recently, Balazs and Velásquez conducted a
systematic study of opinion mining and information fusion [33].

However, these methods of information fusion are all based on complete information systems;
a smaller amount of research has been conducted for incomplete information systems (I ISs).
Jin et al. [34] studied feature selection in incomplete multi-sensor information systems based on
positive approximation in rough set theory. IISs occur as a result of the ability to acquire data,
the production environment, and other factors that result in the presence of original data with unknown
values of attributes. As science has developed, people have found many ways to obtain information.
An information box [35] can have multiple information sources, and every information source can
be used to construct an information system. If all information sources are incomplete, then they can
be used to construct multiple incomplete information systems. Therefore, the motivation for this
paper is shown as follows: From the current research situation, most methods of information system
fusion are all based on complete information systems. In order to broaden the research background of
information fusion, we study the method of incomplete information system fusion. In order to reduce
the amount of information loss in the process of information system fusion, we proposed the method
which used information entropy to fuse incomplete information systems. In particular, by comparison
with another method, our fusion method is validated. In this paper, we discuss the multi-source
fusion of incomplete information tables based on information entropy. It is concluded that the method
proposed here is more effective after comparing it with the mean value fusion method.
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This rest of this paper is organized as follows: Some relevant notions are reviewed in Section 2.
In Section 3, we define conditional entropy in a multi-source decision system, propose a fusion method
based on conditional entropy, and design an algorithm for creating a new information table from a
multi-source decision table based on conditional entropy. In Section 4, we download some data sets
from UCI to prove the validity and reliability of our method; furthermore, we analyze the results of
the experiment. The paper ends with conclusions in Section 5.

2. Preliminaries

In this section, we simply review some basic concepts relating to rough set theory, incomplete
information systems, incomplete decision systems, and conditional entropy (CE) in incomplete
decision systems. More details can be found in the literature [16,36–39].

2.1. Rough Sets

In rough set theory, let S = (U, AT, V, f ) be an information system. The U = (x1, x2, . . . , xn)

is the object set. The AT = (a1, a2, . . . , am) is the attribute set. The V = (v1, v2, . . . , vm) is a set of
corresponding attribute values. The f : U → V is a mapping function.

Let P ⊆ R and P 6= φ, the intersection of all the equivalence relations in P is called the equivalence
relation on P or the indistinguishable relation is defined by IND(P).

Let X be a subset of U. Then, x is an object of U, the equivalence class of x about R is defined by

[x]R = {y ∈ U|xRy},

which represents the equivalence class that contains x.
When a set X expresses a union of equivalence classes, the set X can be precisely defined;

otherwise, the set X can only be approximated; in rough set theory, upper and lower approximation
sets are used to describe the set X. Given a finite nonzero set, U, which is called the domain, that R is
an equivalence relation in the universe U and X ⊆ U, the upper and lower approximations of X are
defined by

R(X) = {x ∈ U|[x]R ∩ X 6= ∅},
R(X) = {x ∈ U|[x]R ⊆ X}.

The R positive region, negative region, and the boundary region of X are defined as
follows, respectively.

posR(X) = R(X), negR(X) =∼ R(X) and bnR(X) = R(X)− R(X)

The approximation accuracy and roughness of the concept X in an attribute set, A, are defined
as follows:

αA(X) =
|A(X)|∣∣A(X)

∣∣ , ρA(X) = 1− αA(X),

respectively. They are often used for measuring uncertainty in rough set theory. |X| refers to the
cardinality of the set X.

The approximation accuracy for rough classification was proposed by Pawlak [19] in 1991.
By employing the attribute set R, the approximation accuracy provides the percentage of possibly
correct decisions when classifying objects.

Let DS = (U, AT ∩ D, V, f ) be a decision system, U/D = {Y1, Y2, . . . , Ym} be a classification
of universe U, and R be an attribute set satisfying R ⊆ AT. Then, the R-lower and R-upper
approximations of U/D are defined as

R(U/D) = R(Y1) ∪ R(Y2) ∪ · · · ∪ R(Ym)
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R(U/D) = R(Y1) ∪ R(Y2) ∪ · · · ∪ R(Ym).

The approximation accuracy of U/D for R is defined as

αR(U/D) =
∑Yi∈U/D |R(Yi)|
∑Yi∈U/D |R(Yi)|

.

Recently, Dai and Xu [40] extended this to incomplete decision systems; i.e.,

αB(U/D) =
∑Yi∈U/D |TB(Yi)|
∑Yi∈U/D |TB(Yi)|

.

The corresponding approximation roughness of U/D for R is defined as

RoughnessR(U/D) = 1− αR(U/D).

2.2. Incomplete Information System

A quadruple IS = (U, AT, V, f ) is an information system. U is a nonempty finite set of objects,
AT is a nonempty finite set of attributes, V=

⋃
a∈A

Va, where Va is the domain of a, and f : U × AT → V

is an information function such that f (x, a) ∈ Va for each a ∈ AT and x ∈ U. A decision system,
(DS), is a quadruple DS = (U, AT ∪DT, V, f ), where C is the condition attribute set, D is the decision
attribute set, and C ∩ D = φ, V is the union of the attribute domain.

If there exists a ∈ AT and x ∈ U such that f (a, x) is equal to a missing value (denoted “∗”),
then the information system is an incomplete information system (I IS). Otherwise, the information
system is a complete information system (CIS). If ∗ /∈ VDT but ∗ ∈ VAT , then we call the decision
system an incomplete decision system (IDS). If ∗ /∈ VDT and ∗ /∈ VAT , then the information system is
a complete decision system (CDS).

Because there are missing values, the equivalence relation is not suitable for incomplete information
systems. Therefore, Kryszkiewicz [36,37] defined a tolerance relation for incomplete information
systems. Given an incomplete information system, I IS = (U, AT, V, f ), for any attribute subset
B ⊆ AT, let T(B) denote the binary tolerance relation between objects that are possibly indiscernible
in terms of B. T(B) is defined as

T(B) = { (x, y)| ∀a ∈ B, f (a, x) = f (a, y) or f (a, x) = ∗ or f (a, y) = ∗}

The tolerance class of object x with reference to an attribute set B is denoted TB(x) = {y|(x, y) ∈ T(B)}.
For X ⊆ U, the lower and upper approximations of X with respect to B are defined as

TB(X) = {x ∈ U|TB(x)∩X 6= ∅},
TB(X) = {x ∈ U|TB(x) ⊆ X}.

3. Multi-Source Incomplete Information Fusion

With the development of science and technology, people have access to increasing numbers
of channels from which to obtain information. The diversity of the channels has produced a large
number of incomplete information sources—that is, a multi-source incomplete information system.
Investigating some special properties of this system and fusing the information are the focus of
the information technology field. In this section, we present a new fusion method for multi-source
incomplete information systems and compare our fusion method with the mean value fusion method
in a small experiment.

3.1. Multi-Source Information Systems

Let us consider the scenario in which we obtain information regarding a set of objects from
different sources. Information from each source is collected in the above information system, and thus,
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a family of the single information systems with the same domain is obtained; it is called a multi-source
information system [41].

Definition 1. (see [32]) A multi-source information system can be defined as

MS = {ISi|ISi = (U, ATi, {(Va)a∈ATi}, fi)},

where U is a finite non-empty set of objects, ATi is a finite non-empty set of attributes of each subsystem, {Va}
is the value of attribute a ∈ ATi, and fi : U × ATi → {(Va)a∈ATi} such that for all x ∈ U and a ∈ ATi,
fi(x, a) ∈ Va.

In particular, a multi-source decision information system is given by MS = {ISi|ISi =

(U, ATi, {(Va)a∈ATi}, fi, D, g)}, where D is a finite non-empty set of decision attributes and gd : U → Vd
for any d ∈ D, where Vd is the domain of decision attribute d. The multi-source information system
includes s single information sources. Let the s overlapping pieces of single-source information system
form an information box with s levels, as shown Figure 1, which comes from our previous study [35].
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Figure 1. A multi-source information box.

3.2. Multi-Source Incomplete Information System

Definition 2. A multi-source incomplete information system (MIIS) is defined as MIIS = {IISi|IISi =

(U, ATi, {(Va)a∈ATi}, fi)}, where

1. IISi is the incomplete information system of subsystem i;
2. U is a finite non-empty set of objects;
3. ATi is the finite non-empty set of attributes for subsystem i;
4. {Va} is the value of attribute a ∈ ATi;
5. fi : U× ATi → {(Va)a∈ATi} such that for all x ∈ U and a ∈ ATi, fi(x, a) ∈ Va.

In particular, a multi-source decision information system is given by MIIS = {IISi|IISi =

(U, ATi, {(Va)a∈ATi}, fi, D, g)}, where D is a finite non-empty set of decision attributes and gd : U → Vd
for any d ∈ D, where Vd is the domain of decision attribute d.

3.3. Multi-Source Incomplete Information Fusion

Because the information box in each table is not complete, we propose a new fusion method.
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Definition 3. Let I be an incomplete information system (IIS) and U = {x1, x2, . . . , xn}. ∀a ∈ AT,
xi, xj ∈ U, we define the distance between any two objects in U with attribute a as follows.

disa(xi, xj) =

{
0, i f f (xi, a) = ∗ or f (xj, a) = ∗;∣∣ f (xi, a)− f (xj, a)

∣∣ else.

Definition 4. Given an incomplete information system IIS = (U, AT, V, f ), for any attribute a ∈ AT, let
T(a) denote the binary tolerance relation between objects that are possibly indiscernible in terms of a. T(a) is
defined as

T(a) = { (x, y) | disa(x, y)La },

where La indicates the threshold associated with attribute a. The tolerance class of object x with reference to
attribute a is denoted by Ta(x) = {y|(x, y) ∈ T(a)}.

Definition 5. Given an incomplete information system IIS = (U, AT, V, f ), for any attribute subset B ⊆ AT,
let T(B) denote the binary tolerance relation between objects that are possibly indiscernible in terms of B. T(B)
is defined as

T(B) =
⋂
a∈B

T(a).

The tolerance class of object x with respect to an attribute set B is denoted by TB(x) = {y|(x, y) ∈ T(B)}.
In the literature [39], Dai et al. proposed a new conditional entropy to evaluate the uncertainty

in an incomplete decision system. Given an incomplete decision system IDS = (U, AT ∪DT, V, f ),
U = {u1, u2, . . . , un}. B ⊆ AT is a set of attributes, and U/D = {Y1, Y2, . . . , Ym}. The conditional entropy
of D with respect to B is defined as

H(D|B) = −
|U|

∑
i=1

m

∑
j=1

∣∣TB(ui)∩Yj
∣∣

|U| log

∣∣TB(ui)∩Yj
∣∣

|TB(ui)|
.

Because the conditional entropy is monotonous and because the attribute set B increases in
importance as the conditional entropy decreases, we have the following definitions:

Definition 6. Let I1, I2, . . . , Is be s incomplete information systems and U = {u1, u2, . . . , un}. ∀a ∈ AT,
U/D = {Y1, Y2, . . . , Ym}. The uncertainty of the information sources in D with respect to Iq (q = 1, 2, . . . , s) for
attribute a is defined as

Ha(D| Iq) = −
|U|

∑
i=1

m

∑
j=1

∣∣∣Tq
a (ui)∩Yj

∣∣∣
|U| log

∣∣∣Tq
a (ui)∩Yj

∣∣∣∣∣∣Tq
a (ui)

∣∣∣ ,

where Tq
a (ui) is the tolerance class of the information sources in D with respect to Iq (q = 1, 2, . . . , s) for attribute a.

Because the conditional entropy of Dai [39] is monotonous, Ha(D| Iq) (q = 1, 2, . . . , s) for attribute
a is also monotonous, and for attribute a, the smaller the conditional entropy is, the more important
the information source is. We have the following Definition 7:

Definition 7. Let I1, I2, . . . , Is be s incomplete information system. We define the lth (l = 1, 2, . . . , s) incomplete
information system, which is the most important for attribute a, as follows:

la = arg min
q∈{1,2,··· ,s}

(Ha(D|Iq)),

where la represents the lth information source, which is the most important for attribute a.
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Example 1. Let us consider a real medical examination issue at a hospital. When diagnosing leukemia, there are
10 patients, xi(i = 1, 2, . . . , 10), to be considered. They undergo medical examinations at four hospitals, which
test 6 indicators, ai(i = 1, 2, . . . , 6), where a1–a6 are, respectively, the “hemoglobin count”, “leukocyte count”,

“blood fat”, “blood sugar”, “platelet count”, and “Hb level”. Tables 1–4 are incomplete evaluation tables based on
the medical examinations performed at the four hospitals; the symbol “∗” means that an expert cannot determine
the level of a project.

Table 1. Information source I1.

U a1 a2 a3 a4 a5 a6

x1 143 11 250.3 150 79 60.1
x2 160.8 11.1 160.2 115.9 88 43
x3 127.3 4 118.2 ∗ 114 80.2
x4 130.2 5.6 120.5 98.5 150 77.9
x5 132.6 ∗ 115.7 72.8 177 89.3
x6 200.1 15.4 230 120.5 76 44.9
x7 125 5.8 111 80 ∗ 77.3
x8 167 16.7 225 120 80 40
x9 ∗ ∗ 222.5 133.4 77 55.3
x10 135 8.1 116 100 210 99

Table 2. Information source I2.

U a1 a2 a3 a4 a5 a6

x1 ∗ 11.2 249.9 149.8 78 59
x2 161 11 ∗ 115 87 45.5
x3 132.3 3.7 120.5 88 115 81
x4 127.8 ∗ 120.5 99 152 78
x5 129.8 6.3 117 ∗ 175 89
x6 197.3 15 269.7 ∗ 75 45.2
x7 130.5 5.5 ∗ 80.3 181 77.2
x8 ∗ 16.7 222.9 121 81 40.9
x9 178.9 13.3 222.8 133 76 55
x10 132.1 7.9 116.1 101.1 211 ∗

Table 3. Information source I3.

U a1 a2 a3 a4 a5 a6

x1 140.1 ∗ 250 150.1 79 ∗
x2 165 12.3 160.9 114.8 88 45
x3 ∗ 4.2 120.5 87.5 115 81
x4 130 5.1 121 ∗ 151 77.9
x5 130.6 6.9 117.9 73 176 88.8
x6 ∗ 16.8 ∗ 119.9 75 ∗
x7 127.7 5.2 111.2 79.6 181 77
x8 166 ∗ 221.3 119.9 81 40.8
x9 173.8 13.4 223 132.9 77 54.5
x10 133.5 8 ∗ 100.2 ∗ 100.1
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Table 4. Information source I4.

U a1 a2 a3 a4 a5 a6

x1 142.5 11 ∗ 150 78 60
x2 163.2 12.2 160.3 114 86 ∗
x3 133.3 4 117.8 88.1 115 81
x4 ∗ 5 ∗ 99 150 77.9
x5 131.8 ∗ 116.5 72.9 ∗ 89.2
x6 200 16.3 ∗ 150 74 45
x7 129 5 111 ∗ 181 77
x8 ∗ 16.2 221 120.2 81 ∗
x9 172 13 ∗ ∗ 77 55
x10 134 8.2 ∗ 100 210 99.8

Suppose VD = {Leukemia patient, Non leukemia patient} and U/D = {Y1, Y2}, where
Y1 = {x1, x2, x6, x8, x9}, Y2 = {x3, x4, x5, x7, x10}. Then, the conditional entropy of the information
sources of D with respect to Iq (q = 1, 2, 3, 4) for attribute ai (i = 1, 2, . . . , 6) is as follows:

Because the conditional entropy can be used to evaluate the importance of information sources
for attribute a, we can determine the importance of all attributes for all information sources by using
Definition 7 and Table 5. The smaller the conditional entropy is, the more important the information
sources are for attribute a. Therefore, I1 is the most important for a1 and a6, I2 is the most important
for a3 and a5, and I4 is the most important for a2 and a4. I3 is not the most important for any attribute.
A new information system, (NIS) is established by part of each table. Furthermore, we take I1 for the
value of a property for a1 and a6, I2 for the property’s value for a3 and a5, and I4 for the property’s
value for a2 and a4. That is, NIS = (V I1

a1 , V I4
a2 , V I2

a3 , V I4
a4 , V I2

a5 , V I1
a6 ), where V

Iq
ai (q = 1, 2, 3, 4; i = 1, 2, . . . , 10)

represents the range of attribute ai under Iq, and we obtain the new information system (NIS) after
fusion. The new information system, (NIS), after fusion is shown in Table 6.

Table 5. The conditional entropy of information sources for different attributes.

U I1 I2 I3 I4

a1 2.5141 2.5467 3.0103 2.6553
a2 2.4615 2.3810 2.2310 1.9983
a3 2.5467 2.3583 2.6966 3.0103
a4 2.8029 2.8741 2.7936 2.7256
a5 2.1759 1.6443 2.2084 2.0198
a6 2.7936 3.0103 2.8741 2.9453

Table 6. The result of multi-source information fusion.

U a1 a2 a3 a4 a5 a6

x1 143 11 249.9 150 78 60.1
x2 160.8 12.2 ∗ 114 87 43
x3 127.3 4 120.5 88.1 115 80.2
x4 130.2 5 120.5 99 152 77.9
x5 132.6 ∗ 117 72.9 175 89.3
x6 200.1 16.3 269.7 150 75 44.9
x7 125 5 ∗ ∗ 181 77.3
x8 167 16.2 222.9 120.2 81 40
x9 ∗ 13 222.8 ∗ 76 55.3
x10 135 8.2 116.1 100 211 99
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The fusion process is shown in Figure 2. Suppose that there is a multi-source information system
MS = {I1, I2, · · · , Is} that contains s information systems and that there are n objects and m attributes
in each information system Ii(i = 1, 2, . . . , s). We calculate the conditional entropy of each attribute by
using Definition 6. Then, we determine the minimum of the conditional entropy for each attribute
of the values using Definition 7. For example, we use different colors of rough lines to express the
corresponding attributes to select a source. Then, the selected attribute values are integrated into a
new information system.
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Figure 2. The process of multi-source information fusion.

In practical applications, the mean value fusion method is one of the common fusion methods.
We compare this type of method with conditional entropy fusion based on approximation accuracy.
The results of two types of fusion method are presented in Tables 6 and 7.

Table 7. The result of mean value fusion of multiple information sources.

U a1 a2 a3 a4 a5 a6

x1 141.8667 11.0667 250.0667 149.975 78.5 59.7
x2 162.5 11.65 160.4667 114.925 87.25 44.5
x3 130.9667 3.975 119.25 87.8667 114.75 80.8
x4 129.3333 5.2333 120.6667 98.8333 150.75 77.925
x5 131.2 6.6 116.775 72.9 176 89.075
x6 199.1333 15.875 249.85 130.1333 75 45.0333
x7 128.05 5.375 111.0667 79.9667 181 77.125
x8 166.5 16.5333 222.55 120.275 80.75 40.5667
x9 174.9 13.2333 222.7667 133.1 76.75 54.95
x10 133.65 8.05 116.05 100.325 210.3333 99.6333

Using Tables 6 and 7, we compute the approximation accuracy of the results of the two fusion
methods and compare their approximation accuracy. Please see Table 8.

Table 8. The approximation accuracies of two fusion methods.

Multi-Source Fusion Mean Value Fusion

Approximation accuracy 0.42857 0.33333

By comparing the approximation accuracies, we see that multi-source fusion is better than mean
value fusion. Therefore, we design a multi-source fusion algorithm (Algorithm 1) and analyze its
computational complexity.

The given algorithm (Algorithm 1) is a new approach to multi-source information fusion.
Its approximation accuracy is better than that of mean value fusion in the result of example Section 3.3.
First, we can calculate all the similarity classes Tq

a (x) for any x ∈ U for attribute a. Then, the conditional
entropy, Ha(D|Iq), is computed for information source q and attribute a. Finally, the minimum of the
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conditional entropy of the information source is selected for attribute a, and the results are spliced into
a new table. The computational complexity of Algorithm 1 is shown in Table 9.

Algorithm 1: An algorithm for multi-source fusion.
Input :A multi-source information system MS = {I1, I2, . . . , Is} and a classification

U/D = {Y1, Y2, . . . , Ym};
Output :A new information table.

1 begin
2 for q = 1 : s do
3 for each a ∈ AT do
4 for each xi ∈ U do

compute : Tq
a (xi); // compute all Tq

a (xi), for any xi ∈ U for attribute a;
5 end
6 HCE← 0;
7 for i = 1 : |U| do
8 for j = 1 : m do
9 if |Tq

a (xi ∩Yj| > 0 then

10 HCE← HCE− |T
q
a (xi∩Yj |
|U| log |T

q
a (xi∩Yj |
|Tq

a (x−i| ;

11 end
12 end
13 end
14 Ha(D|Iq)← HCE; // record CE for attribute a and information source q;
15 end
16 end
17 for each a ∈ AT do
18 minCE← +∞;
19 for q = 1 : s do
20 if Ha(D|Iq) < minCE then
21 minCE← Ha(D|Iq);
22 la ← q;
23 end
24 end
25 end

26 return: (Vla1
a1

, Vla2
a2

, · · · , Vl|AT|

a|AT|).

27 end

Table 9. Computational complexity of Algorithm 1.

Steps 4–5 O(|U|2)
Steps 6–14 O(|U| ×m2)
Steps 1–16 O(s× |AT| × (|U|2 + |U| ×m2))
Steps 17–25 O(|AT| × s)

Step 26 O(|U| × |AT|)
Total O(s× |AT| × (|U|2 + |U| ×m2) + |AT| × s + |U| × |AT|)

In steps 4 and 5 of Algorithm 1, we compute all Tq
a (x) for any x ∈ U for attribute a. Steps 6–14

calculate the conditional entropy for information source q and attribute a. Steps 17–26 are to find the
minimum of the conditional entropy of the corresponding source for any a ∈ AT. Finally, the results
are returned.

4. Experimental Evaluation

In this section, to further illustrate the correctness of the conclusions of the previous example, we
conduct a series of experiments to explain why the approximate precision of conditional entropy fusion
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is generally higher than that of the mean value fusion based on standard data sets from the machine
learning data repository of the University of California at Irvine (http://archive.ics.uci.edu/ml/
datasets.html) called “Statlog (Vehicle Silhouettes)”, “Letter Recognition”, “Phishing Websites”, “Robot
Execution Failures”, “Semeion Handwritten Digit”, and “SPECTF Heart” in Table 10. The experimental
program is running on a personal computer with the hardware and software described in Table 11.

Table 10. Experimental data sets.

No. Data Set Name Abbreviation Objects Attributes Decision Classes Number of Sources Elements

1 Wholesale Customers WC 440 9 4 10 39,600
2 Statlog (Vehicle Silhouettes) S (VS) 846 19 4 10 160,740
3 Airfoil Self-Noise AS-N 1503 7 5 10 105,210
4 Image Segmentation IS 2310 20 7 10 462,000
5 Statlog (Landsat Satellite) S (LS) 6435 37 6 10 2,380,950
6 EEG Eye State EES 14,980 15 2 10 2,247,000

Table 11. Description of the experimental environment.

Name Model Parameters

CPU Intel i3-370 2.40 GHz
Memory Samsung DDR3 2 GB; 1067 MHz

Hard Disk West Data 500 GB
System Windows 7 32 bit

Platform V C + + 6.0

To build a real multi-source incomplete information system, we propose a method for obtaining
incomplete data from multiple sources. First, to obtain incomplete data, a complete data set with some
data randomly deleted is used as the original incomplete data set. Then, a multi-source incomplete
decision table is constructed by adding Gaussian noise and random noise to the original incomplete
data set.

Let MIIS = {I1, I2, . . . , Is} be a multi-source incomplete decision table constructed using the
original incomplete information table, I.

First, s numbers (g1, g2, . . . , gs) that have an N(0, σ) distribution, where σ is the standard
deviation, are generated. The method of adding Gaussian noise is as follows:

Ii(x, a) =

{
I(x, a) + gi if (I(x, a) 6= ∗)
∗ else

,

where I(x, a) is the value of object x with attribute a in the original incomplete information table and
Ii(x, a) represents object x with attribute a in the i-th incomplete information source.

Then, s random numbers (e1, e2, . . . , es) between −e and e, where e is a random error threshold,
are generated. The method of adding random noise is as follows:

Ii(x, a) =

{
I(x, a) + ei if (I(x, a) 6= ∗)
∗ else

,

where I(x, a) represents the value of object x for attribute a in the original incomplete information
table and Ii(x, a) represents object x for attribute a in the i-th incomplete information source.

Next, 40% of the objects are randomly selected from the original incomplete information table, I,
and Gaussian noise is added to these objects. Then, 20% of the objects are randomly selected from the
rest of the original incomplete information table, I, and random noise is added to these objects.

Finally, a multi-source incomplete decision table, MIIS = {I1, I2, . . . , Is}, can be created.

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
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5. Related Works and Conclusion Analysis

In different fields of science, the standard deviation of Gaussian noise and the random error
threshold of random noise may differ. In this paper, we conducted 20 experiments for each data set and
set the standard deviation σ and the random error threshold e to values from 0 to 2, with an increase of
0.1 in each experiment. For CE fusion and mean value fusion, the approximation accuracy of U/D for
each data set is displayed in Table 12 and Figures 3–8. CE and M stand for CE fusion and mean value
fusion, respectively.
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Figure 3. Approximation accuracies for the decision classes in data set WC.
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Figure 4. Approximation accuracies for the decision classes in data set S (VS).
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Figure 5. Approximation accuracies for the decision classes in data set AS-N.
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Figure 6. Approximation accuracies for the decision classes in data set IS.
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Figure 7. Approximation accuracies for the decision classes in data set S (LS).
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Figure 8. Approximation accuracies for the decision classes in data set EES.

We can easily see from Figures 3–8 and Table 12 that when the noise is small, in most cases,
the approximation accuracy of CE fusion is slightly higher than that of mean value fusion. In a certain
range, as the noise increases, the approximation accuracy of CE fusion becomes much better than that
of mean value fusion.

By observing the approximation accuracies of the extensions of concepts of CE and mean value
fusion for the six data sets, we find that in most cases, the approximation accuracy of CE fusion is higher
than that of mean value fusion. In a certain range, as the amount of noise increases, the accuracies of the
extensions of concepts of CE and mean value fusion trend upward, but they are not strictly monotonic.



Entropy 2017, 19, 570 15 of 17

Table 12. Approximation accuracies of conditional entropy fusion (CE) and mean value fusion (M) for each data set.

No. WC S (VS) AS-N IS S (LS) EES

CE M. CE M. CE M. CE M. CE M. CE M.

1 0.316602 0.285538 0.922727 0.920545 0.653333 0.556552 0.730996 0.719472 0.813005 0.810172 0.80811 0.808001
2 0.449165 0.28801 0.911864 0.909707 0.65141 0.637566 0.792931 0.723264 0.814686 0.812448 0.80811 0.808219
3 0.516181 0.316947 0.903262 0.914027 0.663276 0.623302 0.830129 0.73321 0.813092 0.81371 0.808328 0.808219
4 0.559664 0.321196 0.901124 0.914027 0.674797 0.640402 0.870916 0.75169 0.8159 0.811491 0.808547 0.808437
5 0.628114 0.352861 0.903262 0.922727 0.673337 0.655633 0.88357 0.762622 0.817306 0.809001 0.808874 0.808219
6 0.71673 0.39515 0.909707 0.901124 0.670086 0.651709 0.90823 0.786262 0.813727 0.809616 0.808983 0.808437
7 0.669118 0.432635 0.924915 0.896861 0.678436 0.658445 0.908979 0.807603 0.813283 0.811405 0.808656 0.808219
8 0.696226 0.445619 0.935927 0.918367 0.676614 0.665231 0.910552 0.835308 0.812831 0.816204 0.808765 0.808219
9 0.720532 0.504039 0.901124 0.914027 0.680261 0.658811 0.912129 0.821331 0.815166 0.813283 0.809093 0.808219

10 0.72447 0.486781 0.927107 0.918367 0.671166 0.663441 0.913708 0.861613 0.817015 0.812335 0.809202 0.808001
11 0.74031 0.536304 0.914027 0.886288 0.678436 0.654011 0.914498 0.853094 0.816292 0.816329 0.808874 0.808001
12 0.725 0.569728 0.933714 0.901124 0.680261 0.672983 0.916873 0.874697 0.814041 0.812587 0.808983 0.808001
13 0.720307 0.569966 0.940367 0.907554 0.680261 0.666667 0.914569 0.867871 0.814634 0.8125 0.808874 0.808219
14 0.754902 0.611408 0.920545 0.918367 0.680261 0.672069 0.916873 0.880065 0.816406 0.812474 0.809093 0.808219
15 0.75835 0.59792 0.962877 0.916195 0.676614 0.672078 0.916873 0.888618 0.816608 0.812839 0.808983 0.808219
16 0.736434 0.599647 0.935927 0.916195 0.678979 0.671174 0.916873 0.884146 0.813762 0.814495 0.808437 0.808328
17 0.741748 0.634234 0.962877 0.909707 0.680261 0.676614 0.916873 0.897667 0.812944 0.814582 0.808983 0.808219
18 0.748047 0.618705 0.953811 0.911864 0.676614 0.66792 0.916873 0.900779 0.810762 0.8125 0.808656 0.808219
19 0.761811 0.667286 0.944828 0.931507 0.680261 0.667385 0.916873 0.893469 0.812717 0.815001 0.808765 0.808219
20 0.753425 0.684701 0.949309 0.927107 0.680261 0.672255 0.916873 0.908193 0.815734 0.816406 0.808219 0.808437



Entropy 2017, 19, 570 16 of 17

6. Conclusions

In this paper, we studied multi-source information fusion in view of the conditional entropy.
There are many null information sources in the age of big data. To solve the problem of integrating
multiple incomplete information sources, we studied an approach based on multi-source information
fusion. We transformed a multi-source information system into an information table by using this
fusion method. Furthermore, we used rough set theory to investigate the fused information table,
and compared the accuracy of our fusion method with that of the mean value fusion method. According
to the accuracies, CE fusion is better than mean value fusion under most conditions. In this paper,
we constructed six multi-source information systems, each containing 10 single information sources.
Based on these data sets, a series of experiments was conducted; the results showed the effectiveness of
the proposed fusion method. This study will be useful for fusing uncertain information in multi-source
information systems. It provides valuable selections for data processing in multi-source environments.
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